

COURSE GUIDE 2021-2022

Course Title	Deep Learning
Term	3
Inholland	Engineering, Design and Computing
Faculty	
Language of	English
instruction	
Cycle	First cycle/undergraduate/Bachelor level
Inholland	Diemen
Location	
Code Subjects	To be determined
Number of	15
ECTS	
Content	Topics covered in lectures and assignments:
subjects	 Introduction to neural networks and deep learning
	 Mathematical foundations of deep learning
	 Building a basic deep learning model in Tensorflow/Keras
	 Evaluating a model using Tensorflow/Keras
	 Image recognition using convolutional neural networks
	Using pretrained networks
	 Sequence learning using recurrent neural networks
	Text processing
	Generative deep learning
	Aspects covered in the project:
	Preparing a data set for deep learning
	 Selecting a model architecture and/or pretrained model
	Training a model using Tensorflow/Keras
	Optimizing a model using parameter tuning
	 Evaluating the value of a model
Lecturer(s)	To be decided
Learning	After completing the minor the student is able to:
outcomes	 Explain the working of a deep learning model
	Choose an appropriate deep learning architecture for a real-world
	problem
	Prepare data sets for deep learning using Python

COURSE GUIDE 2021-2022

	Train fully connected, convolutional, and recurrent deep learning
	models using Tensorflow/Keras
	 Conduct experiments to evaluate deep learning models
Mode of	The Deep Learning minor spans over a period of 10 weeks,
delivery,	from January 31, 2022 to April 8, 2022.
planned	Contact hours: 4 days (maximum) per week at school
activities and	
teaching	
methods	
Prerequisites	The minor is open for 3rd and 4th year bachelor students. The following
and co-	skills are required:
requisites (if	Python programming
applicable)	Basic statistics
	• Basic algebra
Recommended	Francois Chollet, Deep Learning with Python, Manning Publications
or required	
reading and/or	
other learning	
resources/tools	
Assessment	Written exam (3 EC)
methods and	Individual Assignments (6 EC)
criteria	Group Project (6 EC)